Lampe à vapeur de sodium

Les vapeurs de sodium sont utilisées dans plusieurs type de Lampe à décharge luminescente sous haute pression, les lampes à Haute pression ainsi qu'à basse pression.



Catégories :

Éclairage - Composant électrique - Électrotechnique

Page(s) en rapport avec ce sujet :

  • EQUIPE INDEPENDANT ENCAPSULÉ HAUTE FACTEUR POUR LAMPES DE VAPEUR DE SODIUM HAUTE PRESSION. Utilisation interieur pour incorporer 50-1000W 230V/50Hz IP 25 -... (source : )

Les vapeurs de sodium sont utilisées dans plusieurs type de Lampe à décharge luminescente sous haute pression, les lampes à Haute pression ainsi qu'à basse pression.

Historique

L'emploi de la vapeur de sodium comme source de lumière remonte à l'utilisation de tourbe combustible, où la lumière orange de la flamme était faussement attribuée au soufre. Ce n'est qu'au milieu du XIXe siècle, avec l'avènement des tubes à décharge sous basse pression et des arcs au carbone, qu'on étudie l'usage du sodium et de ses sels pour l'éclairage. Ce n'est cependant que vers les années 1930 que les premières lampes à vapeur de sodium métallique verront le jour grâce à l'élaboration par Arthur Compton d'un verre au borate résistant aux alcalins mais à mesure que la pression de vapeur et la température de décharge sont augmentées, la lampe se détériorait irrémédiablement au bout de quelques secondes.

En 1932, Philips et Osram, respectivement aux Pays-Bas et en Allemagne, commercialisent les premières lampes de ce type qui seront employées immédiatement pour l'éclairage routier. Avec une efficacité lumineuse de 55 lm/W, ces sources étaient les plus économiques à l'époque. La technologie de ces lampes a beaucoup évolué jusque dans les années 1950, où leur morphologie a ensuite peu changé. Leur particulièrement mauvais rendu des couleurs et leurs dimensions assez élevées limitent leurs applications à l'éclairage de voies publiques. Par conséquent, il a été particulièrement tôt envisagé d'accroître la pression de vapeur pour dissiper plus de puissance par unité de longueur, et d'enrichir le spectre émis pour rendre la lumière plus agréable à l'œil.

Un aspect essentiel de ces sources, qui a fait l'objet d'efforts énormes de recherche et de développement, est l'isolation thermique du tube à décharge. Les premières lampes employaient un tube à décharge accouplé à un vase de Dewar transparent, comparable à ceux présents dans les bouteilles thermos. Quoique l'isolation thermique fût satisfaisante à l'époque, ces bouteilles externes avaient l'inconvénient de se salir rapidement de l'intérieur. Ce problème fut résolu au milieu des années 1950 avec un design monopièce où le tube à décharge est enclos dans une enceinte tirée sous vide. L'isolation thermique fut perfectionnée avec l'utilisation de gaines de verres qui rendaient ces lampes plutôt lourdes et fragiles.

Un progrès majeure fut le remplacement de ces gaines par un film transparent d'or, d'argent ou de bismuth déposé sur la surface interne de l'ampoule externe, réfléchissant le rayonnement infrarouge vers le tube à décharge. Ce n'est qu'à la fin des années 1950 qu'on découvre que le saphir synthétique est résistant aux vapeurs de sodium.

Ainsi une première lampe à haute pression est fabriquée en 1958 dans les laboratoires de Thorn, en Grande-Bretagne. Cependant, ce n'est qu'avec le développement de tubes en alumine polycristallin, et des scellements corrects, qu'une lampe commerciale verra le jour en 1964. Quoique la barrière des 100 lm/W fût atteinte avec cette technologie, l'emploi de ces films minces posait le problème de l'absorption de la lumière émise par la décharge électrique. Ce problème fut en partie résolu avec l'emploi d'oxyde d'étain pour le film, puis d'oxyde d'indium et d'étain qui permit d'atteindre au début des années 1980 les 200 lm/W, une limite qui à ce jour n'a pas été dépassée.

Les premières lampes faites en laboratoire avaient un remplissage de xénon et de sodium, mais pour des raisons pratiques du mercure a été rajouté.

Technologie

Basse pression

Ampoule d'une lampe LSP
La même allumée

Les lampes à vapeur de sodium sous basse pression (LPS) sont composées d'un tube à décharge plié en forme de U et enclos dans une ampoule externe tirée sous vide. Le tube à décharge est rempli d'un mélange néon (99 %) argon (1 %) sous basse pression donnant la possibilité l'amorçage de la décharge et l'échauffement du sodium jusqu'à 260 °C. Le tube est fabriqué à base de verre sodocalcique recouvert d'une couche mince de verre au borate, résistant à la vapeur du métal alcalin. Ce tube est pourvu à ses extrémités d'électrodes recouvertes d'oxydes de terres rares pour une bonne émission électronique.

L'ampoule externe a un vide dont la qualité est maintenue grâce à des miroirs de baryum localisés près de la douille. Une pastille de zirconium est fréquemment employée pour craquer les vapeurs d'hydrocarbures qui peuvent être présentes. Un film d'oxyde d'indium et d'étain, d'une épaisseur de 0, 3 micromètre recouvre l'intérieur de l'ampoule externe. Ce revêtement est conçu pour réfléchir les rayonnements infrarouges vers le tube à décharge.

Haute pression

Les lampes à vapeur de sodium sous haute pression (SHP) utilisent d'autres composés chimiques comme le mercure pour des raisons pratiques ; cependant, seul le sodium est responsable de l'émission lumineuse, le xénon et le mercure ne servant qu'à permettre à la lampe de démarrer, ainsi qu'à fixer les bonnes propriétés électriques de l'arc.

Les sources sous basse pression sont caractérisées par un rayonnement quasi monochromatique orange, ce qui n'est pas le cas des lampes sous haute pression où l'interaction entre les différents éléments donne un spectre juxtaposé de bandes et de raies discrètes. Ainsi, la lumière de ces lampes a une meilleure qualité, car elle contient d'autres couleurs que l'orange. Cependant, l'IRC reste médiocre du fait que la teinte prédominante reste un jaune-orange assez saturé. C'est cette caractéristique qui donne à ces lampes une excellente efficacité lumineuse, l'œil étant plus sensible aux longueurs d'onde émises. Pour ces deux raisons, ces sources éclairent la vaste majorité des routes et des industries du monde.

Deux types de lampes dont la lumière est plus blanche ont été développés dans les années 1980. Le premier type de lampe a un CRI de Ra65, comparé à Ra20 pour les lampes respectant les traditions, et une température de couleur de 2 200 K au lieu de 2 000 K. Ces changements sont obtenus par l'accroissement de la température et de la pression de vapeur, dont les effets secondaires sont un rendement moins bon et une durée de vie décrue. Malgré ce changement, la qualité de la lumière n'est toujours pas suffisante à un usage commercial. Ces lampes trouvent leur emploi en centre ville et dans les quartiers résidentiels.

Le deuxième type de lampe a une pression et une température toujours plus élevées, donnant une lumière dont la couleur est proche de celle d'une lampe à incandescence. C'est par conséquent tout naturellement, avec un CRI de Ra80 et une température de couleur de 2500-2700 K, que ces lampes à sodium blanches ont trouvé une application dans l'éclairage commercial, à l'endroit où on cherche à obtenir un environnement chaleureux. Cependant, leur rendement et leur durée de vie moindre ne leur donnent pas une fiabilité pour l'éclairage urbain.

La famille des lampes à vapeur de sodium standard couvre de 35 watts jusqu'à 1 000 W, avec une efficacité lumineuse de 90 lm·W-1 jusqu'à 140 lm·W-1, ce qui en fait une source de choix pour un éclairage économique.

Dans les puissances, il existe de multiples modèles différents :

Dans les lampes tubulaires claires standard, il y a :

  • 50 W
  • 70 W
  • 100 W
  • 150 W
  • 250 W
  • 400 W
  • 600 W
  • 1000 W

Alimentations électriques

À l'exception des lampes de 18 Watt, l'ensemble des modèles jusqu'à 180 Watt ont une tension d'amorçage supérieure à 250 Volt. Par conséquent, la majorité de ces lampes sont alimentées par un autotransformateur à dispersion dont la tension au secondaire en circuit ouvert est de 450 V.

Depuis les années 1980, il existe des dispositifs d'alimentation dits hybrides composés d'une self-inductance et d'un amorceur haute tension. La self est conçue de telle manière que le troisième harmonique de courant soit important. L'onde de courant résultante est plus carrée que sinusoïdale, propriété qui accroît le rendement de ces lampes.

Horticulture

Ces lampes sont particulièrement pratiques pour faire pousser des plantes en tout genre en intérieur. Elles permettent de transformer les courts jours d'hiver en beaux jours d'été. Deux types de lampes utilisées par les professionnels sont actuellement disponibles pour les amateurs.

Ces lampes sont une source ponctuelle de lumière préférable pour les plantes à une source linéaire comme les tubes fluorescents.

Théorie de fonctionnement

Impact écologique

Voir aussi

Recherche sur Amazon (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Lampe_%C3%A0_vapeur_de_sodium.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 07/04/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu